Walsh Functions:

A Digital Fourier Series

Lsing a mathematical technique called
Fourier analysis, it is possible to build
arbitrary wave forms by adding together
various ‘'‘components.”

While a full appreciation of the inner
workings of the Fourier series requires a
knowledge of advanced mathematics far
bevond the capacity of many persons inter-
ested in electronics, that in no way deters
them from using the concepts or even
simplified portions of the math in practical
applications. Even beginners are aware that
wave forms can be broken into a set of
harmonics and that a set of sinewaves of
tnteger muitiple frequencies can be summed
to build up a complex wave form, In a like
manner, Walsh function concepts can be put
to work once a few fundamental ideas are
mastered. A key to generating complicated
sounds in computerized music and voice
outputs is the ability to generate arbitrary
wave forms from digital codes.

In these days of digital computers, a
person familiar with Fourier concepts might
ask the question: Is it possible to build up
any wave form out of a sum of square waves
of some type? Such a system would be ideal
for use with digital logic. This question has
been answered in the affirmative by the
German mathematician H Rademacher, not
in 1872 or 1962, but in 1922, His set of
square waves, called ‘'Rademacher func-
tions,”’ consists of a fundamental square
wave of 50% duty cycle at some frequency

plus  harmonics of sguare waves of
2,4,8,16,32 and higher powers of two times
the fundamental frequency. A deficiency of
this system, however, is that it 5 not
possible to generate any arbitrary wave
shape from only a simple sum of these
square wave harmonics.
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Figure 1: The Wafsh Functions WAL(Q)
through WAL{15). The fact that Walsh
functions lend themselves to digital genero-
tion js evident in the nature of the basic
wave forms, The notations SAL and CAL
emphasize the resemblance of Walsh func-

tions to the Fourfer series trigonometric
functions SIN and COS,
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Figure 2: The logic of a digital circuit which generates a set -of Walsh

Fourier series are used to
create wave forms as the
sum of pure sine and
cosine waves at selected
frequencies; this leads to
the obvious question: Is it
possible to use a similar
mechanism which builds a
complex wave form out of
digital wave forms with
sharp edges?

functions using a string of flip Hlops and some external gating. The fip flops
are connected as toggles (division by 2 at each stage}, The exclusive OR gates
combine terms ta produce the more complicated Walsh wave forms indicated.

Walsh functions are the
digital answer to sines and
cosines used in Fourier
analysis.

In translating a mathe-
matical summation into a
physical circuit, the opera-
tional amplifier provides
the summing element and
the resistors from inputs
to the summing node form
the coefficients of the
component signals,
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Also in 1922, } L Walsh presented his
independently developed system to the
American Mathematical Society. His system
was later shown by the Polish mathematician
Kaczmarz in 1929 to include the Rade-
macher system as a subset of the Walsh
complete set of orthonormal functions,
which, in plain English, says that some of
the Walsh functions are square waves and
that if all Walsh functions are allowed (you
may not need to use them all, however) then
any arbitrary periodic wave form can be
built up by adding them together in a
manner totally analagous to sinewave sum-
mation in Fourier series.

Interest in the engineering applications of
Walsh functions was sparked by an article in
the |IEEE Spectrum by Dr H F Harmuth of
the University of Maryland in 1968 and is
continuing because of the suitability of
Walsh functions to generation by digital
systems.

The fastest way to wunderstand what
Walsh functions are is simply to look at a
picture of some wave forms. Figure 1 shows
the Walsh functions WAL(O) through
WAL(15). It is seen that WAL(Q) is merely a
DC level which we will usually ignore in
practical applications since offsets are easily
handled by other means and that WAL(1),
WAL(3), WAL(7), and WAL(15) are really
the square wave Rademacher functions. You
will note that in addition to the WAL(n)

designation, the functions are also labeled
with CAL or SAL. These [abels are also
commonly used and are acronyms for the
terms Cosine wALsh and Sine wALsh by
analogy to Fourier analysis, 1n short all WAL
(even n} are called CAL and all WAL (odd n)
are called SAL. CAL and SAL are also
numbered but the numbers do not corres-
pond to the WAL designation though they
are easy to figure out. Also by analogy to
Fourier analysis, 2 Walsh spectrum is called a
sequency spectrum as opposed to a Fourier
frequency spectrum,

Enter Mr Gray and His Code

However, knowing what Walsh functions
ook like and knawing how to generate them
digitally are two different things. It is clear
that the generation of WAL(1), WAL(3),
WAL{7), WAL{15), etc, is a snap since they
are simple square waves. A string of flip
flops does the job, as shown in figure 2. The
generation of the remaining functions, white
a little more difficult, s not impossibly
complex once the mathematics i1s shaken
down into a few simple rules:

1. To generate WAL(n}, first write the
number n in Gray code, Gray code is a
modified binary code having only one
bit changing at 2 time when going to
the next higher or next lower number.
A table of Gray code numbers is



Table 1. Gray Code Bit Patterns for the
Wafsh Functions WAL(Q) Through
WAL(31). The corresponding SAL und CAL
notation of each WAL ftunction is shown
down the right hand column of the table.

shown in table 1: and with a little
study, the pattern can easily be
extended to any value.

2. Starting with the least significant bit,
assign a square wave Rademacher
function to each bit, Assign WAL{1)
to the LSB, WAL{3) to the next,
WAL{7) to the next, etc.

3. Any Rademacher function whose bit
15 O is not used. Those whose bits
are 1 are combined by modulo 2 ad-
ditien, which js 1o say by exclusive
OR gates to give the Walsh output of
that order.

4. All  Walsh functions must begin
positive 50 that the composite Walsh
output may need to be inverted de-
pending upon how many exclusive OR
gates were used to produce it.

A couple of examples are shown in figure 2
and a complete generator producing ali
Walsh functions from WAL{1) through
WAL(15) is shown in figure 3.

it should be noted that although a Walsh
function i1s mathematically defined as going
from +1 to —1, and it is possible to obtain
positive and negative swings with CMQS
logic with positive and negative supplies, in
practice little is gained by going this route
since all that is involved is a DC offset which
is easily handled by the summing ampiifier.
Thus, 0—5 volt TTL logic outputs are fine.

Now that a set of Walsh functions has
been generated, it only remains to add them
in a summing amplifier with appropriate
magnitudes and signs to simulate any wave
form with a stajr step approximation. The
general expression of a Walsh function repre-
sentation 15 2 summation anatogous to that

found in Fourier analysis:
Arbitrary wave form = X{t} = Ag +

Lx _w]

i§1 (Ai SAL(i) + B; CAL(i))
where A; and B; are weighting constants
which correspond to the resistors used in the
summing amplifier inputs. The size of the
steps and the number present will be deter-
mined by how many harmonics are com-
bined. The more you use, the smaller and
more numerous the steps, hence the better
will be your approximation to your original
wave form. The determination of these
combining coefficients from the wave form
desired requires a bit more detailed
consideration.
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Wave Form Synthesis

Before proceeding any further into the
theoretical aspects of Walsh applications, a
review of what we are attempting to do and
how we intend to do it will help get our feet
on solid ground. The device we wish to build
using Walsh functions could be called “a
square wave to arbitrary wave form con-
verter.” It will be a circuit into which you
put a square wave of some frequency and
out of which comes a periodic analog signal
with a frequency related to that of the input
wave {perhaps same submultiple) and a wave
form that can be made to take any shape
desired by adjusting a set of controls,
switches or internal resistors. With such a
device, digital logic could be used to
synthesize a frequency and the converter
could then be set to produce a sinewave for
use in standard applications, or given suffi-
cient accuracy of conversion, a computer
could be made to talk or even sing. Both
have been done by engineers working in this
area.

The converter consists of two parts: The

S0 you want to produce a
sine wave? Calculate the
values at 16 evenly spaced
focations in the period,
then use these values to
calculate the Walsh coeffi-
cients using a tabulator
method. Then wire in re-
sistors of values derived
from the Walsh coeffi-
cients and the output of
the circuit will be a step
function approximation of
the desired sine wave.
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Figure 3: Extending the
logic of figure 2, this cir-
cuit generates alf the Walsh
functions WAL(1} through
WAL(15) as ilustrated in
figure . This circuit uses
an alternate kRind of fip
flop, the JK master sfave
tiip flop connected as a
toggfe. This circuit could
be built with two 7473
fCs, three 7486 ICs and
one 7404 circuit. (One of
the 12 exclusive OR sec-

tions. is used as an
inverter.)

When Walsh function
amalysis is applied to a
linear ramp, what's the re-
sult? A set of resistor
values which form an ordi-
nary DA converter opera-
ting upon the binary value
in the counter used for the
Walsh function generator.
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first is the digital expander which expands
the input square wave into a variety of
digital wave forms, and the second is the
analog combiner which adds up these wave
forms to produce the periodic analog
output. The expander is, of course, the
Walsh generator shown earlier and the com-
biner will be dicussed below,

All of the Walsh outputs will be fed into
the summing mnction of an operational
amplifier, but they will not have the same
strength or sign. 1t Is the strength and sign of
each compaonent which will determine the
net analog output so that once we have
chasen Lhe analog output we desire, the
relative strength and sign of each Walsh
harmonic must be calculated from that
desired wave form. Once these values are
known, a negative sign can be handled with a
digital inverter and the magnitude by the
choice of the resistor value into the summing
junction. The net output will then be a stair
step approximation to the desired output
which can then be made more perfect by
low pass filtering to smooth the wave shape.

Thearetically, the calculation of the coef-
ficients from the analog wave form desired

Do

«5AL8

involves complex operations with the inte-
gral caleulus; but it turns out that it is
possible to shorteut the high powered math
by starting, not with the anaiog signal, but
rather with the stair step approximating
function itself. This function can be easily
determined by eyeball or by just taking the
height of each step to be the value of the
analog output at the center of each time
interval. Figure 4 shows two examples: a
linear ramp and a sinewave with 16 step
approximations. The height of each step is
shown,

Before praceeding to an actual calcula-
tion we will give some time and work saving
rules, which are illustrated in figure 5.

1. The waveform to be synthesized must
be repetitive {as in Fourier synthesis),
although it is easy to start and stop at
any point by control of the digital
input.

2. It is especially advantageous to use 2°
steps in one period as this gives an
automatic cutoff to the number of
Walsh harmonics required.

Thus: With a 4 step ottput no functions



beyond WAL{3) are required, with OuTPUT
an 8 step output no functions beyond :
WAL(7) are reguired, with a 16 step
output no functions beyond WAL{15) '_’J,_"l *15
are required . . .etc. H3

3. If the coefficients for a higher order 11

approximation are calculated (say 16 A, g

steps), and a less accurate approxi- RAMP “'55‘”5”\ 1.,

mation can be used (say 8 steps) then :I:
one only need disconnect WAL(B) e

through WAL{15) since the lower i
order coefficients will have the same
value in either case {or nearly so). This 120
effect is demonstrated in the sine
generator circuit.

If your wave form to be synthesized
possesses certain symmetries or can .
be made to do so by a DC baseline -9
shift, many Walsh component coef- 7
ficients will be zero which will not LJ_,A-;; J«J
only ssimphify the calculations, but the i

circuitry as well,

4. If the wave form to be synthesized is
even, which is to say that any value SUTRUT
that the function takes to the left of ‘“":'LI“GE'
center is the same as the value an equal ]
distance to the right of center, then =] * 98
only CAL functions will be used and _,.:F’——
all SAL coefficients will be zero. A \

5. If the wave form is odd, or can be / \
made 50 by a baseline shift, then only — - ™55
SAL functions will be used and all / \
CAL coefficients will be zero. Here 1 I
any value to the left of center equals ¥ +.195
minus the value to the righi of center. / _\q

6A. If the wave form is even as in point 4 *
above and in addition it is even about q'° E\_
the 1/4 point, then only CAL(k)
where k is an even number will be \
present and all CAL(k) where k is an \
odd number wili be zero. )\

6B. If the wave form is even as in point 4 \
above and in addition is odd about the 1
1/4 point, then only CAL(k) where k }-L-—----..._

15 an odd number will be present and M. ]E '
all CAL{k) with k an even number will 2
be zero.

TA. If the wave form is odd as in point 5 Figure 4; By picking a
above and in addition is even about wave form since that value will be exactly series of weighting con-
the 1/4 point, then onty SAL{k) where haif the sum of all steps. This s probably starits for euch Walfsh func-
k is an odd number will be present and best understood by examining some practi- tion term, the outputs of
all SAL(k) where k is an even number cal examples. figure 3 can be summed by
will be zero, an operationel  amplifier

/B. If the wave form is edd as in point 5, to produce arbitrary wave
and in addition is odd about the forms, Here are examples
1/4 point, then only SAL(k) with k an The first example will be the linear ramp. of the ramp and sine wave
even number will be present and ali This function can be made odd by adjusting gpproximations generated
SAL{k) where k is an odd number the baseline, so by rule 5 it is seen that only by the Walsh function
wil! be zero, SAL coefficients need be calculated and no method, The smooth curve

In the calculations that follow it will also CAL tunctions need be generated. is the desired one in each

be observed that if a wave form is even or The best way to get your mind right in case, obfained by filtering

odd, the signed sums of the step values need calculating coefficients is to make a table as the output of the summing
only be calculated for the first half of the shown in table 2. The value desired for each amplifier.

A& PPROXIMATE
STAIRSTEP

Two Examples

69



A EVEN FUNCTION , SYMMETRIC 8. ODD FUNCTION , ANTISYMMETRIC
Y ABOUT CENTER OF ONE PERIOD \_ ABOUT CENTER OF ONE PERIOO
] +5 I

\ _I—-! +35

# \ -— +ir -
I ONLY CAL (K} TERMS ] M :> ONLY SAL (K) TERMS
L1, LT 1 ARE NON ZERO L, 1 L. ARE NON ZERD
L—{JHE PIIEHIUEJJ -3

I
o — ONE PERIOD —

, EVEN FUNCTION, SYMMETRIC 00D FUNCTION, ANTISYMMETRIC

¢ ABOUT CENTER OF HALF PERICD D ABOUT CENTER OF HALF PERIOD
EVEN FUNCTION, SYMMETRIC EVEN FUNCTION, SYMMETRIC
ABOUT CENTER OF ONE PERICD ABOUT CENTER OF ONE PERIOD

—|+3. ‘ A
. ‘ | . |-_
OKLY CAL{K]) TERMS FOR

L1J., Lb EYEN K ARE NON ZERC

4 1 k
L—U'HE PE H‘Iﬂﬂ—"

ONLY CAL(K) TERMS
FOR ODC K ARE NON ZEROQ

-5 -
|-— ONE PERIOD —-l

£ EVEN FUNCTON, SYMMETRIC ~ 00D FUNCTION, ANTISYMMETRIC
\  ABOUT CENTER OF HALF PERIOD i ABOUT CENTER OF HALF PERIOD

ODO FUNCTION , ANTISYMME TRIL ODC FUNCTION ANTISYMMETRIC
J | i

ABOUT CENTER OF ONE PER{OD ABOUT CENTER OF ONE FERIOD
: | 1

ONLY SALI(K) TERMS
FOR K QDD ARE NON ZERG

; (3 |
ONE PERICD ONE PERIOD

Figure 5: The properties of even and odd functions give constraints on the
weighting constants needed for a given wave form. Here agre iflustrations of

six different special cases of symmetry which give zero terms in the Walsh Normalized Ratio
function sum. SAL{1) = —1 = —1

SALIZ) = 05=-1/2
SAL(4) = -D.25 =-1/4
SALIB) = —D.125= -1/8

CONLY SAL(K) TERMS
FOR K EVEN ARE NON ZEROQ

—
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SIGN OF WALSH FUNCTIONS
P = positive N = nagative

Desired [~ ONE PERIOD -
Function | in|m N -
vawes | 5 [F|TI2[5 00T 5[ 0l 5l 5515 g o
_ . _ step comprising the output function is writ-
SALE}I : g 5 i ; :; ; : ;! I: l‘: :;l z : : : ten in order along the top of the table. Since
SAL ' - i i
earia 1 plelninininlelein|nirlrirleindn we are attempiing to p_r{fducea_ilnﬁar ramp,
satid) ] pirinin(rirIn|NiPlPININIP|PIN]N our mjitput will _he a rising staircase with a
SALIG) ] PININ|P{PIN[N|PINIPIPININ|PIP{N fixed increase with each step (we used two
g::::?: ? !r: ': .:‘ ﬁ : :l ;‘ :I ': : ;;:;I :t g ﬁ units per step}. This staircase will eventually
SAL 8] einlelnlelulelniptinte nielnledn h-e filtered to remove the jogs and give a
linear ramp.
| The body of the table shows the sign
Table 2: A computational table used. to help determine the Walsh (positive or negative} each particular Walsh
function coefficlents for the linear ramp. The relative strength of the function takes in each of the 16 time
SAL or CAL term in question is obtained by summing horizontally the intervals into which onc period of the
+1 (P} or -1{N) Walsh function vafue multiplied by the actual waveform output wave form has been divided. As
value desired for that element of time. After figuring out the value of indicated earlier, we need not go past
the signed surn for each term, the values should be normafized so that WAL{15) in this case. The Walsh sign values
the fargest magnitude is 1 (regardfess of sfgn) Thus the normalized can be taken from the wave forms of figure
ratfas shown below this picture were computed assuming — 128 corres- 1 or from table 3 which is good for up to 32
.poﬂded.ta -1, segment approximations.

The numbers to the far right are the sums
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of the upper values when all signs are taken
into account. Thus, for WAL{1) we see that
it is positive in the first half period, but the
step values are ncgative, so we get:

(—15) + (—13) + {11} + (—9) + {-7) +
(—5) + {—3) + {—1) = —64 and in the second
half period where WAL(1) is negative and
the values positive we getf:

—(+1}) — (#3) — (+5) — (+7) — {+9) -
(+131) — (+13) — {(+15) = —64 or a total of
—128. This number gives the relative
strength of WAL(1} in the output summa-
tion. We repeat the process for each Walsh
function.

If we divide all nonzero values by the
largest ( WAL(1) }, it is observed that the
weighting 1s binary and further it is seen that
only the square wave Rademacher functions
are nonzero. Thus, it is seen that the way to
generate a ramp is with a counter feeding a
standard digital to analog converter. (So here
we have a long, complicated way of arriving
at an “obvious” resuit, but it also should be
noted that D te A binary weighting is onfy
“matched” to a ramp output.)

if another wave form such as a sinewave
is desired, a D to A converter could be used,
but a more accurate method would be to
switch between 16 voltages of appropriate
values, The Walsh system is just as accurate
and is simpler for the more general case.

If we divide a sinewave into 16 partions,
the value at the center of the {irst interval
will be Sin (11.25°) = 0.19509 and the next
will be Sin (33.75%) = 0.55557 and the next
Sin (56.25%) = 0.83147, etc. This produces
the top row of our table. Since Sin{x) is an
odd function, even about the 1/4 point,
only SAL(1), SAL(3), SAL({5) and SAL(7)
are calculated over the first half period. Our
chart with the calculated coefficient values is
shown in table 4, Since in a standard opera-
tional amplifier summing circuit {we won’t
go into details here as they can be found in
any book on operational amplifiers), the
relative summing ratios are related to the in-
verse of the summing resistor values, we
divide each normalized value into 1 and mul-
tiply by the feedback resistor value to obtain

]
A, X 1Ok 1% 5% EIA
10.00k 10.0k 10k
24.14k 24.3k 24k
1214 k 121 k 120k
50.27k 49 9k 51k

Table 5: The EIA resistor equivalents for
the calculated values of table 4. The 5%
tolerance resistance values shown at the right
were used in the circuit of figure 6,

The Sign of CAL and SAL in Each 1/32 |nterval
of Their Period
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{Columns only for sase of reading. )

fable 3: A larger computational table giving 32 Walsh function components
and their signs during a 32 interval period.

Normalized _ A
coefficients

SIN{101.25]} = 0,98078
SIN{168.75) = 0,19509

V=< 17 |SIN{123.75) = 0.83147
Z (2% |7 |SIN(146.25) = 0.56557

- |™mjDTw i

SIN{33.75" ) = 0.55557
SIN(56.25° )} = D,B3147
SiIN{78.75°) = 0.98078

SAL(1}
SAL(3)
SAL{5)
SAL(7)

&
Ty
e
=]
i
i
pk
-
2
e
P
f
P
P

Zl=z|o T
|z |7z (T
Zzlolz v
Z | m|z T

—————— 1/2 period ———-=]

Table 4: Using the computational table to calculate the resistor vafues
for g 16 step sine wave approximation. The specialized sine wave gen-
grator of figure 6 uses these results, subject to a further gpproximation
shown in table 5. Nofe that the signs of the coefficients take into
gccount the inverting op amp configuration and thus appear reversed.
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INPUT AT 16 TIMES
OUTPJUT FREQUENCY

PHASE REVERSING
CONTROL INPUT

*EXACT VALUVES DF CAPACITORS DEPEND UFON THE DESIGN
FREQUENCY. REMOVE CAPACITORS ENTIRELY TQ SEE UN-
FILTERED STAIR STEP FUNCTION.

IC3
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98 Q¢ QD +5Y
1.4
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IC4 {MINI-DIP)

1K SiNE
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% -1zv
I Einiesl———- N el eSS W W T | R L ] ey | SIS - wial - .
COMPOMNENTS BELOW THIS LINE CAN BE +5Y S
OMITTED FOR 8 STEP SINEWAVE 80K OFFSET ADJUSTMENT
SAL(T (OPTIONAL )
4 5 1K
POWER CONMELTIONS - wl b 3 =) K L
+5y GND APy - ]
ICI 7486 14 7 5y
2 7486 14 7
IC3 T4
@ 5 @ IK SALLS)
6 120K
e MMMy \"

Figure 6: Applying Walsh
Functions., Here is the cir
cuit of a sine wave genera-
tor which produces a
Walsh function approxima-
tion of the sine function.
The frequency of the sine
wave is set by the input to
pin 14 of the 7493, Filter-
ing components of the op-
erational  amplifier help
smooth out the staircase
wave form generated by
stmmiing the Walsh furnc-
fHot components as
weighted by resistors.
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each summing resistor value in ohms. Table
5 shows the calculated values compared to
1% and 5% EI1A resistor standard values.

The total sinewave converter circuit is
shown in figure 6. While three of the co-
efficients were negative, a single inverter was
used on the lone positive Walsh output since
the op amp inverts the wave form, In addi-
tion, a gate has been added by which the
phase of the entire output wave form can be
inverted by simultaneously inverting all
Walsh components. It is interesting to also
note that If the components below the
dotted line are removed, an 8 step sinewave
approximation resufts. The feedback capaci-
tor and output low pass filter can be added
ta smooth up the wave form to give a nearly
perfect sinewave.

The Walsh methods presented here would
seem to have wide application for experi-
mentation and engineering. Although these
concepts are based on advanced mathe-
matics, nevertheless, as the philosopher
Seneca observed so many years ago, “The
language of truth is simple.”

Walsh Functions for Music Synthesis?

Some background information on the use
of orthogonal functions in music wave form

synthesis has been generated by Hal
Chamberlin, and published in Electronotes
Newsletter, Volume 4, Number 25, July 20
1973, Hal also sent along a copy of a portion
of a report by B A Hutchins, 60 Sheraton
Or, lthaca NY 14850, on the use of Walish
functions in wave form generafion. Accord-
ing to Hal, there was considerable analysis of
Walsh functions in electrenic music circles

during a period of time approximately cen-
tered on 1973, but complexities of con-
trolling the Walsh harmonic amplitudes
digitally led to the demise of that interest.
Hal's current approach is to employ a real
time Fourier series evaluation module which
digitally sums terms of the first 32 com-
ponents of a Fourier series, specified to 8 bit
accuracy both in amplitude and phase.

GLOSSARY

The following terms may be unfamiliar o some
reagders and are highlighted with  further
explanations.

Baseline: |1 is possible to add a fixed DC level 1o an
analog signal, which will not affect its wave form.
Using the 0 V and 15 V levels obtained with TTL
circuits {using pull up resistors] as “Walsh func-
tions’” corresponds to a baseline adjustment of
+2.5 voits to the ideal case of a symmetric positive



or negative voltage value.

CAL: An acronym derived from Cosine wAlLsh.
The CAL functions are the “even’ Walsh func-
tions, analogous to the Fourier cosine functions.

Duty cycle: For a digital wave form, the duty cycle
i= the percentage af time spent in the high state
relative ta the full period of the wave form.

Even function: An even function (or wave form) is
ane which is symmetric about the center pgint of
its peried. This means that its value a certain dis-
tance to the left of center is the same as its vaiue
the same distance to the right of center.

Fundamental: The lowest frequency in & Fourier
or Walsh function summation.

Gray code: A binary code maodified so that only
one bit changes when going 1o the next hagher or
lower number. It is aften used to deglitch position
encoders.

Harmonic: A frequency which is a multiple of the
fundamental frequency.

Integral calculus: The mathematical formalism
used to calculate the area under a curve. The inte-
gral caleulus is used together with the theory of
orthogonal functions to evaluate analytically the
coefficients of Fourier and Walsh function expan-
siorng. The example of Walsh function coefficient
caleulation in this article uses properties of Walsh
functions to simplify the process of calculating
integrals required for the coefficients. There 5 no
such simplification for the Fourier coefficients of a
wave farm, thus making the application of Fourier
analysis a more complicated grohlem.

Odd function: An odd function (or wave forml is
ane which 15 antsymmetne with respect to the
center point of its period. This means that if at a
fixed interval befare the center point its value is X,
then at the same interval past the centerpoint the
value will he —X,

QOrthonormal functions: The mathematical theory
of orthonormal functions 15 one of the most
powerful tools used by physicists, theoretica
chemists and engineers. Among other applications,
it provides the tocls needed to analyze complex
wave forms and synthesize such wave forms using
the principle of superposition. That the whole is
a linear sum of 115 parts. Fourier series and Walsh
function analysis mentioned here are two particu-
lar choices af a set of arthonormal functions which
have useful practical applications, {See also spec-
trum below.|

Periodic wava form: A periodic wave form is one
which has a fixed shape which is constantly re-

peated. A simple example would be the clock
oscillator signal of a typical haome brew central
pracassor, A more complicated example {subject to
imperfections) would be a long steady tone played
on a musical instrument.

Rademachar functions: The subset of Walsh com-
panents consisting of only the unmodified square
wWaves. :

SAL: An acronym derived from Sine wAlLsh. The
SAL functions are the “‘odd” Walsh functions,
analogous to the Fourier sine functions.

Sequency: Walsh function terminclogy referring
ta the Walsh components of a wave form in exactly
the same way that frequency is used 10 refer to
the Fourier components. Example: Sequency
spectrum,

Spactrum: When orthonormal functions are used
to analyze a wave form, the result frequently is a
set of coefficients which weigh each of the basic
functions found in a (thearetically) infinite sum
which represenmts the wave form, Each coefficient
corresponds 1o some parameter of the orthonormal
functions, which might ba, for example, a number
'n.”” Whatever the parameter is, a spectrum for the
analysis s obtained by plotting the coefficient
values versus the parameter value for a large num-
ber of coefficients. For a Fourier analysis, the
result is a plot of coefficient versus frequency
(which at the low end corresponds to a small
integer value). A Walsh spectrum would plot the
coefficient of WAL {n) versus n.

Wave form: For the purposes of this article, a
signal’'s wave form is a value of (for example)
valtage as a function of time.®
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