
The structure of the Reiser file system
by Florian Buchholz

The Reiser file system was created by Hans Reiser. The design objectives were to increase performance
over the ext2 file system, offer a space efficient file system, and to improve handling of large directories
compared to existing file systems. Reiserfs uses balanced trees to store files and directories and it also
offers journaling.

This document describes the on-disk structure of the Reiser file system version 3.6. This document does
not describe how the file system tree is balanced, how the journaling is performed, or how files and
directories are managed within an implementation of the file system.

Blocks

The reiserfs partition is divided into blocks of a fixed size. The blocks are numbered sequentially starting
with block 0. There is a maximum number of 2^32 possible blocks in one partition.

The partition starts with the first 64k unused to leave enough room for partition labels or boot loaders.
After that follows the superblock. The superblock contains important information about the partition such
as the block size and the block numbers of the root and journal nodes. The superblock block number
differs depending on the block size, but always starts at byte 65536 of the partition. The default block
size for reiserfs under Linux is 4096 bytes. This makes the superblock block number 16. There is only
one instance of the superblock for the entire partition.

Directly following the superblock is a block containing a bitmap of free blocks. The number of blocks
mapped in the bitmap depends directly on the block size. If a bitmap can map k blocks, then every k-th
block will be a new bitmap block.

Block size 4,096 512 1,024 8,192

#blocks in bit map 32,768 4,096 8,192 65,536

superblock 16 128 64 8

1st bit map 17 129 65 9

2nd bit map 32,768 4,096 8,192 65,536

3rd bit map 65,536 8,192 16,384 131,072

4t h bit map 98,304 12,288 24,576 196,608

...
(assuming that the partition is large enough to have 2nd, 3rd, 4th bitmap)

Following the first bitmap block should be the journal, but the information in the superblock is the
authorative source for that information.

The Superblock

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

1 of 21 09/17/2008 04:01 PM

Name Size Descript ion

Block count 4 The number of blocks in the partition

Free blocks 4 The number of free blocks in the partition

Root block 4 The block number of the block containing the root node

Journal block 4 The block number of the block containing the first journal node

Journal device 4 Journal device number (not sure what for)

Orig. journal size 4
Original journal size. Needed when using partition on systems with
different default journal sizes.

Journal trans. max 4 The maximum number of blocks in a transaction

Journal magic 4 A random magic number

Journal max batch 4 The maximum number of blocks in a transaction

Journal max commit
age

4 Time in seconds of how old an asynchronous commit can be

Journal max trans.
age

4 Time in seconds of how old a transaction can be

Blocksize 2 The size in bytes of a block

OID max size 2 The maximum size of the object id array

OID current size 2 The current size of the object id array

State 2 State of the partition: valid (1) or error (2)

Magic string 12 The reiserfs magic string, should be "ReIsEr2Fs"

Hash function code 4 The hash function that is being used to sort names in a directory

Tree Height 2 The current height of the disk tree

Bitmap number 2
The amount of bitmap blocks needed to address each block of the file
system

Version 2 The reiserfs version number

Reserved 2

Inode Generation 4 Number of the current inode generation.

The inode generation number is a counter that denotes the current generation of inodes. The counter is
increased every time the tree gets re-balanced.

Example:

The following is the start of the superblock of a 256MB reiserfs partition on an Intel based system:

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

2 of 21 09/17/2008 04:01 PM

00000000 66 00 01 00 93 18 00 00 82 40 00 00 12 00 00 00 f........@......

00000010 00 00 00 00 00 20 00 00 00 04 00 00 ac 34 11 57 ¬4.W

00000020 84 03 00 00 1e 00 00 00 00 00 00 00 00 10 cc 03 Ì.

00000030 08 00 02 00 52 65 49 73 45 72 32 46 73 00 00 00 ReIsEr2Fs...

00000040 03 00 00 00 04 00 03 00 02 00 00 00 dc 52 00 00 ÜR..

Block count: 65638
Free blocks: 6291
Root block: 16514
Journal block: 18
Journal device: 0
Original journal size: 8192
Journal trans. max: 1024
Journal magic: 1460745388
Journal max. batch: 900
Journal max. commit age: 30
Journal max. trans. age: 0
Blocksize: 4096
OID max. size: 972
OID current size: 8
State: 2 (error)
Magic String: ReIsEr2Fs
Hash function code: 3
Tree height: 4
Bitmap number: 3
Version: 2
Inode generation: 21212

Bitmap blocks

The bitmap blocks are simple bitmaps, where every bit stands for a block number. One bitmap block can
address (8 * block size) number of blocks. Byte 0 of the bitmap maps to the first eight blocks, the second
byte to the next eight, and so on. Within a byte, the low order bits map to the the lower number blocks.
Bit 0 maps to the first block, bit 1 to the second, etc. A set bit indicates that the block is in use, a zero bit
that the block is free.

Example:

00000400 ff ff f7 ff 7f 00 00 00 00 00 00 00 00 80 cb bd ÿÿ÷ÿ..........Ë½

These 16 bytes of bitmap block 0 describe block numbers 8192 to 8319.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

3 of 21 09/17/2008 04:01 PM

Blocks 8192-8210: used

Block 8211: free (f7 is 11110111 binary)

Blocks 8212-8230: used

Blocks 8231-8302: free

Blocks 8303-8305: used

Block 8306: free

Block 8307: used

Blocks 8308-8309: free

Blocks 8310-8312: used

Block 8313: free

Blocks 8314-8317: used

Block 8318: free

Block 8319: used

Had the above entry been from a bitmap block other than bitmap block 0, then (bitmap block # * block
size * 8) needs to be added for the proper block number. By bitmap block # we understand the ordinal
number (0 for the 1st, 1 for the second, ...) not the block number of the bitmap block.

Given a block number b, one can determine its status as follows:

b div (8 * block size) : bitmap block # (integer division)

Let r = b mod (8* block size), then

r div 8: byte within bitmap block, and
r mod 8: bit within byte

The File System Tree

The Reiser file system is made up of a balanced tree (B+ or S+ tree as it is called in the reiserfs
documentation). The tree is composed of internal nodes and leaf nodes. Each node is a disk block. Each
object (called an item) in reiserfs (file, directory, or stat item) is assigned a unique key, which can be
compared to an inode node number in other file systems. The internal nodes are mainly composed of
keys and pointers to their child nodes. There is always one more pointer than there are keys. P0 points to
the objects that have keys smaller than K0, P1 to those K0<=obj

For our example partition, part of the S+ tree looks like this (think of the key as a large 128-bit number
for now):

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

4 of 21 09/17/2008 04:01 PM

Block headers

Each disk block that belongs to an internal or leaf node starts with a block header. Only unformatted
blocks don't have a block header. A block header is always 24 bytes long and contains the following
information:

Name Size Descript ion

Level 2 level of the block in the tree

Nr. of items 2 number of items in the block

Free space 2 free space left in the block

Reserved 2

Right key 16 right delimiting key for the block

The right delimiting key was originally used for leaf nodes but is now only kept for compatibility.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

5 of 21 09/17/2008 04:01 PM

Example:

The following is the block header of block 8416, the leftmost leaf node in the tree.

00000000 01 00 06 00 e4 04 00 00 00 00 00 00 00 00 00 00 ä...........

00000010 00 00 00 00 00 00 00 00

Level: 1
Items: 6
Free space: 1252 bytes

Keys

Keys are used in the Reiser file system to uniquely identify items, but also to locate them in the tree and
achieve local groupings of items that belong together. A key consists of four objects: the directory id, the
object id, the offset within the object, and a type. Note that the actual object identifier is only one part of
the key. The directory id is present so that files that belong into the same directory are grouped together
and for the most part are located in the same subtree(s). The offset is present because an indirect item
can at most contain (blocksize-48)/4 pointers to unformatted blocks (see indirect items below). For a
block size of 4096 bytes this would result in a maximum file size of 4048KB. To be able to handle larger
files, multiple keys are used to reference the file. All fields of the key are the same, except for the offset,
which denotes the offset in bytes of the file, which a particular key references. I do not know why the
type of an object is part of the actual key.

In reiserfs up until version 3.5 the offset and the type fields were both 4 byte values. This meant, that the
maximum file size was limited to roughly 2^32 bytes, or 4GB (2^32 bytes plus the data of one more
indirect item plus the tail, actually). To increase the maximum file size in the file system, in version 3.6,
the offset field was increased to 60 bits, and the type field shrunk to 4 bits. This now allows for a
theoretical maximum file size of 2^60 bytes, but since there can be only 2^32 blocks with a maximum
of 2^16 bytes per block, the file system itself only supports 2^48 bytes.

In order not to be incompatible to older versions of the file system, there are now to different versions of
keys around, which can be very confusing as the key itself doesn't carry a version number. To make up
for this, the formerly reserved last 16 bits of the item header now contain a version number, so if
necessary, the key's version number can be obtained from there. This makes it fairly straightforward for
keys contained in leaf nodes, but if one really wanted to determine the version of a key inside an internal
node, one would have to follow the tree down to the leaf, first. The code in the reiserfs library actually
uses this ugly hack to determine the key format:

static inline int is_key_format_1 (int type) {

 return ((type == 0 || type == 15) ? 1 : 0);

}

/* old keys (on i386) have k_offset_v2.k_type == 15 (direct and

 indirect) or == 0 (dir items and stat data) */

/* */

int key_format (const struct key * key)

{

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

6 of 21 09/17/2008 04:01 PM

 int type;

 type = get_key_type_v2 (key);

 if (is_key_format_1 (type))

 return KEY_FORMAT_1;

 return KEY_FORMAT_2;

}

This actually implies that stat items will always be assumed to have KEY_FORMAT_1, because they, also,
have a type of zero in version 2.

Name Size Descript ion

Directory ID 4 the identifier of the directory where the object is located

Object ID 4 the actual identifier of the object ("inode number")

Offset 4 the offset in bytes that this key references

Type 4

the type of item. Possible values are:
Stat: 0
Indirect: 0xfffffffe
Direct: 0xffffffff
Directory: 500
Any: 555

Name Size Descript ion

Directory ID 4 the identifier of the directory where the object is located

Object ID 4 the actual identifier of the object ("inode number")

Offset 60 bits the offset in bytes that this key references

Type 4 bits

the type of item. Possible values are:
Stat: 0
Indirect: 1
Direct: 2
Directory: 3
Any: 15

Only stat items have an offset of 0. Files (direct and indirect items) and directories always start with an
offset of 1 so that they are sorted behind the stat item in the leaf nodes. For directory items the "offset"
field contains the hash value and generation number of the leftmost directory header of the directory
item (see below), not the offset in bytes.

Examples:

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

7 of 21 09/17/2008 04:01 PM

The following shows the first two keys of the internal node that is contained in block 8482. The first one
is of version 2, the second of version 1.

00000000 02 00 00 00 0e 00 00 00 00 00 00 00 00 00 00 00

Directory id: 2
Object id: 14
Offset: 0
Type: Stat item (0)

00000000 03 00 00 00 04 00 00 00 01 00 00 00 f4 01 00 00 ô...

Directory id: 3
Object id: 4
Offset: 1
Type: Directory item (500)

Two keys are compared by comparing their directory ids first, and if those are equal, by comparing the
object ids, and so on for offset and type. The fact that the Linux reiserfs code generates a warning when
the type fields need to be compared for keys stored in memory indicates that the type field does not
matter from a structural point of view. The only time the field needs to be compared seems to be during
"tail conversion", where a direct item is changed into an indirect one.

Internal nodes

An internal node block consists of the block header, keys, and pointers to child nodes. Other than the
figure of the S+-tree above, the internal nodes have all the keys first, which are sorted by the key values.
Then following the last key comes the pointers, starting with the pointer to the subtree containing all the
keys smaller to the first key.

The level in the block header should always be larger than 1 for internal nodes. The number of items in
the block header denotes the number of keys in the node, not the combined number of keys and
pointers. There is always one more pointer than there are keys. The following figure describes the layout
of the pointer structure:

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

8 of 21 09/17/2008 04:01 PM

Given a key n (whose position in the block is 24 + n * 16 bytes) and a total number of k keys in the block,
the left pointer that corresponds to key n can be found at byte 24 + k * 16 + n * 8. The free space starts
at byte blocksize - free space, where free space is the value from the block header.

Example:

00000000 02 00 a0 00 e0 00 00 00 00 00 00 00 00 00 00 00 .. .à...........

00000010 00 00 00 00 00 00 00 00 02 00 00 00 0e 00 00 00

00000020 00 00 00 00 00 00 00 00 03 00 00 00 04 00 00 00

00000030 01 00 00 00 f4 01 00 00 03 00 00 00 9e 04 00 00 ô...........

00000040 00 00 00 00 00 00 00 00 04 00 00 00 05 00 00 00

...

00000a10 01 10 00 00 00 00 00 20 e0 20 00 00 04 0b b4 cc à´Ì

00000a20 03 21 00 00 94 0d 54 c5 0b 21 00 00 e0 0f 2f c5 .!....TÅ.!..à./Å

00000a30 5e 23 00 00 b4 0f f4 ff 60 23 00 00 38 07 a9 ff ^#..´.ôÿ`#..8.©ÿ

...

Level: 2
Nr. items: 160
Free space: 224 bytes

Key 0: {2, 14, 0, 0}
Key 1: {3, 4, 1, 500}
Key 2: {3, 1182, 0, 0}
...
Ptr 0: {8416, 2820}
Ptr 1: {8451, 3479}
Ptr 2: {8459, 4064}
Ptr 3: {9054, 4020}
...

This example shows parts of block 8482, which is also depicted in the diagram describing the S+-tree
above. Key 0 starts at byte 24 (0x18), and since there are 160 items in the block, Ptr 0 starts at byte 2584
(0xa18). Note that the reserved parts of the pointers actually contain junk data. The free space starts at
byte 3872 (0xf20) and it may also contain junk data.

Leaf nodes

Leaf nodes are found at the lowest level of the S+-tree. Except for indirect items all the data is contained
within the leaf nodes. Leaf nodes are made up of the block header, item headers, and items:

Note that the free space in the block is located between the last item header and item, and that items
are in reverse order. This way, new item headers and items can simply be added without having to
rearrange existing items. New headers go after the last header, and new items before the first on-disk
item. Also note that items are of variable length.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

9 of 21 09/17/2008 04:01 PM

It em Headers

The item header describes the item it refers to. It contains the key for the item as well as the item's
location and size within the leaf node. The type of the item is determined by its key.

Name Size Descript ion

Key 16 The key that belongs to the item

Count 2
The free space in the last unformatted node for an indirect item if this is an indirect item
0xffff for stat and direct items
the number of directory entries for a directory item

Length 2 total size of the item

Location 2 offset to the item body within the block

Version 2 0 for all old items (keys), 1 for new ones

Note that the comments in the structure definition indicate that new items have a version of 2. However,
the KEY_FORMAT_3_6 constant is defined as 1 and this is used to set the version.

Example:

The following is the item header for the stat item described by key {2, 14, 0, 0}, which was used earlier
as an example of type 2 (version 3.6). It shows that the version is indeed the new version, even though
the heuristic above would indicate an old key.

00000000 02 00 00 00 0e 00 00 00 00 00 00 00 00 00 00 00

00000010 ff ff 2c 00 d4 0f 01 00 ÿÿ,.Ô...

Key: {2, 14, 0, 0}
Count: 0xffff
Length: 44 bytes
Location: byte 4052
Version: 1 (3.6)

It ems

Items finally contain actual data. There are four types of items: stat items, directory items, direct items,
and indirect items. Files are made up of one or more direct or indirect item, depending on the file's size.
Every file and directory is preceded by a stat item.

St at It ems

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

10 of 21 09/17/2008 04:01 PM

Stat items contain the meta-data for files and directories. Keys belonging to stat items always have an
offset and type of 0, so that the stat item key always comes first before the other one(s) belonging to the
same "inode number". Due to the same reason that there are two versions of keys, there are also two
versions of stat items, as the size field was increased from 32 bits to 64 bits. For some reason, the fields
for number of hard links, user id, and group id also were increased from 16 bits to 32 bits, each and other
fields were introduced. Thus a stat item of version 3.5 is 32 bytes in size, whereas one of version 3.6 has
44 bytes.

The structure of a stat item of version 1:

Name Size Descript ion

Mode 2 file type and permissions

Num links 2 number of hard links

UID 2 user id

GID 2 group id

Size 4 file size in bytes

Atime 4 time of last access

Mtime 4 time of last modification

Ctime 4 time stat data was last changed

Rdev/blocks 4
Device number /
number of blocks file uses

First dir. byte 4
first byte of file which is stored in a direct item
if it equals 1 it is a symlink
if it equals 0xffffffff there is no direct item.

The structure of a stat item of version 2:

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

11 of 21 09/17/2008 04:01 PM

The file mode field identifies the type of the file as well as the permissions. The low 9 bits (3 octals)
contain the permissions for world, group, and user, the next 3 bits (from lower to higher) are the sticky
bit, the set GID bit, and the set UID bit. The high 4 bits contain the file type. On a Linux system, possible
values for the file type are (as defined in stat.h):

Const ant Name 16-bit Mask 4-bit value Descript ion

S_IFSOCK 0xc000 12 socket

S_IFLNK 0xa000 10 symbolic link

S_IFREG 0x8000 8 regular file

S_IFBLK 0x6000 6 block device

S_IFDIR 0x4000 4 directory

S_IFCHR 0x2000 2 character device

S_IFIFO 0x1000 1 fifo

Other operating systems might have additional file types. Only regular files and directories have other
items associated with the stat item. In all the other cases the stat item makes up the entire file.

The "rdev" field applies to special files that are not regular files (S_IFREG), directories (S_IFDIR), or links
(S_IFLNK). In those cases, the field holds the device number (or socket number) belonging to the file. The
"generation" field applies to the other cases and denotes the inode generation number for the
file/directory/link (see above for superblock inode generation field' description). The "first" field doesn't
seem to be used in version 2 anymore.

Example:

The following example shows the stat item denoted by key {2, 14, 0, 0} from the item header example
above:

00000000 ff 43 05 00 03 00 00 00 50 00 00 00 00 00 00 00 ÿC......P.......

00000010 00 00 00 00 00 00 00 00 2d 1c 17 3f 34 94 ff 3e -..?4.ÿ>

00000020 34 94 ff 3e 01 00 00 00 00 00 00 00 4.ÿ>........

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

12 of 21 09/17/2008 04:01 PM

Mode: 0x43ff -- type: directory, sticky bit set, 777 permissions
Reserved: 5
Num. links: 3
Size: 80 bytes
UID: 0
GID: 0
Atime: Thu Jul 17 16:59:09 2003
Mtime: Sun Jun 29 20:36:52 2003
Ctime: Sun Jun 29 20:36:52 2003
Blocks: 1
First: 0

Direct ory It ems

Directory items describe a directory. If there are too many entries in a directory to be contained in one
directory item, it will span across several directory items, using the offset value of the key. Directory
items are made up of directory headers and file names. Just like leaf nodes, the free space (if there is
any) is located in the middle of the item. The structure of a directory item is as follows:

Directory headers contain an offset, the first two parts of the referenced item's key (directory id and
object id), the location of the name within the block, and a status field.

Name Size Descript ion

Offset 4 Hash value and generation number

Dir ID 4 object id of the referenced item's parent directory

Object ID 4 object id of the referenced item

Location 2 offset of name within the item

State 2
bit 0 indicates that item contains stat data (not used)
bit 2 whether entry is visible (bit set) or hidden

The file names are simple zero-terminated ASCII strings. File name entries seem to be 8-byte aligned,

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

13 of 21 09/17/2008 04:01 PM

but the information in the directory headers should be the authorative source for the start of the name
(and implicitly the end by looking at the previous header entry). The "offset" field is aptly misnamed as it
contains a hash value of the file name. Bits 7 through 30 of the field contains the actual hash value and
bits 0 through 6 a generation number in case two file names within a directory hash to the same value.
Bit 31 seems to be unused. The hash value is used to actually search for file and directory names in
reiserfs, and the directory items are sorted by the offset value. Three different hash functions are
possible: keyed tea hash, rupasov hash, and r5 hash. The purpose of the hash function is to create
different values for different strings with as little collisions as possible. In the Linux implementation of
reiserfs, the r5 hash seems to be the default.

Example:

The following example is an entire directory item, that belongs to the stat item example from the
previous section:

00000000 01 00 00 00 02 00 00 00 0e 00 00 00 48 00 04 00 H...

00000010 02 00 00 00 01 00 00 00 02 00 00 00 40 00 04 00 @...

00000020 00 6d 6f 73 0e 00 00 00 60 00 00 00 30 00 04 00 .mos....`...0...

00000030 76 69 2e 72 65 63 6f 76 65 72 00 00 00 00 00 00 vi.recover......

00000040 2e 2e 00 00 00 00 00 00 2e 00 00 00 00 00 00 00

Header 0: {hash 0, gen. 1, 2, 14, byte 0x48, 4 (bit 2 set: visible)}
Header 1: {hash 0, gen. 2, 1, 2, byte 0x40, 4 (bit 2 set: visible)}
Header 2: {hash 15130330, gen. 0, 14, 96, byte 0x30, 4 (bit 2 set: visible)}
Name 2: "vi.recover"
Name 1: ".."
Name 0: "."

As one can see, the directory referenced by key {2, 14, 0, 0} consists of 3 entries, which in return have
the following keys (all these keys will lead to the stat item for the directory first):

. {2, 14, 0, 0}

.. {1, 2, 0, 0}

vi.recover {14, 96, 0, 0}

Direct It ems

Direct items contain the entire file body of small files or the tail of a file. For small files, all the necessary
other information can be found in the item header and the corresponding stat item for the file. For the
tail of a file, the key for the direct item is the last one for the file.

Indirect It ems

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

14 of 21 09/17/2008 04:01 PM

In direct items contain pointers to unformatted blocks that belong to a file. Each pointer is 4 bytes long
and contains the block number of the unformatted block. An indirect item that takes up an entire leaf
node can at most contain (blocksize-48) / 4 pointers (the 48 bytes are for the block and item headers). In
a partition with 4096 bytes block size, a single indirect item can at most reference 4145152 bytes (4048
KB: 1012 pointers to 4K blocks). Larger files are composed of multiple indirect items, using the offset
value in the key, plus a possible tail.

The Journal

The journal in reiserfs is a continuous set of disk blocks and it describes transactions made to the file
system. Each time the file system is modified in any way, instead of performing the changes directly in
the file system, the transactions that belong together (those that need to be atomic so that the file
system is in a consistent state) are written into the journal first. At a later point the transactions in the
journal will be flushed and, if everything was successful, marked as such.

The journal is of fixed size in the file system. In the 2.4.x Linux implementation the journal size is fixed at
8192 blocks plus one block for the journal header. The journal itself consists of variable-length
transactions and a journal header. The journal starts with the list of transactions and the journal header
is at the end of the journal. A transaction spans at least three disk blocks and the journal header is
exactly one block. The journal is a circular buffer, meaning that once the last block of the journal is
reached, it wraps around and uses the first block again.

It can often be read that reiserfs only records the file system meta data in its journal. This is not entirely
correct. It is true, that purpose of the journaling is to ensure the integrity of the meta data. However,
reiserfs journals entire disk blocks as they have to appear in the file system after the journal transaction
is committed. Since directories, stat data and small files are stored directly in the leaf nodes of the tree,
some amount of data is also contained in the journal and could be used to reconstruct earlier versions of
a file or directory.

Journal Header

The journal header is a single block which describes where the first unflushed transaction can be found
in the journal. The journal header is the last block of the journal. In our example the journal's first
transaction starts at block 18 and there are 8192 journal blocks. Therefore. the journal header is at block
8210. There are only 12 bytes of information in the journal header. The rest of the block is undefined.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

15 of 21 09/17/2008 04:01 PM

The transaction pointed to by the offset must have a higher transaction ID or a higher mount ID than the
flushed transaction in order to be considered an unflushed transaction. If this is not the case, all
transactions are considered flushed and the block pointed to by the offset is used to start recording new
journal transactions.

Example:

00000000 e2 74 02 00 24 1c 00 00 1d 01 00 00 12 00 00 00 ât..$...........

Last flush ID: 160994
Unflushed offset: 7204 blocks
Mount ID: 285

In this example, the first unflushed transaction can be found at block 7222 (since the journal starts at
block 18). However, the block found there does not contain a transaction description (see below) and
therefore there aren't any unflushed transactions for the partition.

Transactions

Transactions describe changes in the file system. Instead of directly modifying blocks in the file system
tree, instead the new or changed blocks are first written into the journal and mapped to their real
location in the file system.

A transaction consists of a transaction description block, a list of blocks, and a commit block at the end.
All those blocks are contiguous within the journal.

Descript ion block

The description block contains the transaction and mount IDs, the number of blocks in the transaction, a
magic number, and the first possible half of mappings.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

16 of 21 09/17/2008 04:01 PM

Name Size Descript ion

Transaction ID 4 The transaction ID

Len 4 Length (in blocks) of the transaction

Mount ID 4 Mount ID of the transaction

Real blocks Block size - 24 Mapping for blocks in transaction

Magic 12 Magic number. Should be "ReIsErLB"

The "Real blocks" field is theoretically dependant on the block size. The first 12 bytes of the block have
the IDs and the length, and the last 12 bytes contain the magic string. Everything in between is used for
the block mapping. However, in the Linux 2.4.x implementation, the struct for a description block defines

 __u32 j_realblock[JOURNAL_TRANS_HALF];

where JOURNAL_TRANS_HALF is a constant set to 1018. This means that the blocksize has to be 4096 for
journaling to work with reiserfs under Linux!

The actual block mapping is done as follows: The "Real blocks" field is seen as an array that contains for
each block in the transaction the actual block number of the block in the file system. If we number every
four bytes in the field as r0 through rn, then block 0 of the transaction is how block number r0 needs to
look like after flushing the journal. Block 1 of the transaction is block r1, and so on. If the "Real blocks"
field of the description block is not large enough, the field in the commit block is used in addition. This
limits the maximum number of blocks in one transaction to 2*(blocksize-24)/4. (2036 for a block size of
4K), but the actual limit is set in the superblock.

Commit block

The commit block terminates a transaction. It contains a copy of the transaction ID and the transaction
length. There is also a 16 byte field reserved for a digest value at the end of the block, but this is not
used currently.

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

17 of 21 09/17/2008 04:01 PM

Name Size Descript ion

Transaction ID 4 The transaction ID

Len 4 Length (in blocks) of the transaction

Real blocks Block size - 24 Mapping for blocks in transaction

Digest 16 Digest of all blocks in transaction. Not used.

Example:

The following example describes an old transaction in our example partition. The transaction starts in
block 7243 (the description block), spans 4 data blocks (7244-7247) and has its commit block at block
number 7248. Only the description block is shown, as the other blocks are not relevant for the example.

00000000 1b 6e 02 00 04 00 00 00 1b 01 00 00 90 22 00 00 .n..........."..

00000010 07 f7 00 00 aa 22 00 00 10 00 00 00 00 00 00 00 .÷..ª"..........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

...

00000ff0 00 00 00 00 52 65 49 73 45 72 4c 42 00 00 00 00 ReIsErLB....

Transaction ID: 159259
Length: 4 blocks
Mount ID: 283
Real blocks[0]: 8848
Real blocks[1]: 63239

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

18 of 21 09/17/2008 04:01 PM

Real blocks[2]: 8874
Real blocks[3]: 16
Magic: ReIsErLB

This transaction therefore describes the following mapping: when the transaction is committed/flushed,
block 7244 is written to block 8848, block 7245 to block 63239, block 7246 to block 8874, and block 7247
to block 16 (the superblock).

Navigating reiserfs

In addition to the file system tree itself, in order to access files, one needs to navigate through the
directory tree, as well. The root directory of a Reiser file system always has the key {1, 2, 0, 0}. The keys
for subsequent directories and files within the directory hierarchy can then be found in the headers of
the directory items. Since the keys in reiserfs are sorted by parent directory ID first, items that are in the
same directory are grouped together in the file system tree. This allows for searching for keys locally
instead of always having to go through the root node of the file system.

A key {a, b, 0, 0} will always yield the stat item of the directory or file, and subsequent items will follow
immediately after that in the file system tree. The stat item contains the size of the actual item in bytes.
With this information and using the size information of the individual item headers, the keys for other
parts of the directory/file can be constructed and the parts located. In many cases, the items will be
arranged consecutively on the disk, anyway.

The following three examples will show three different types of files: a very small file consisting only of a
stat item and a tail, a larger file that actually has an indirect item, and finally a very large file that spans
over multiple indirect items. We again use the example partition from above, which is an image of a
partition mounted as "/var" in a SuSe Linux 8.0 system.

Example 1: small f ile

The first example is that of a small file that contains only of a stat item and one direct item. The file is
"/var/log/y2start.log-initial". The root directory ("/var") has key {1,2,0,0}, which by navigating the file
system tree can be found in block 8416. There we can find that the "log" directory has key {2,13,0,0}.
This directory is also contained in block 8416. The file "y2start.log-initial" has key {13, 1633, 0, 0}. By
inspecting block 8482, we find that this key is contained in the leaf node block number 24224. The item
headers for the keys {13, 1633, 0, 0} and {13, 1633, 1, 2} are as follows:

00000090 0d 00 00 00 61 06 00 00 00 00 00 00 00 00 00 00 a...........

000000a0 ff ff 2c 00 a4 0b 01 00 0d 00 00 00 61 06 00 00 ÿÿ,.¤.......a...

000000b0 01 00 00 00 00 00 00 20 ff ff f0 00 b4 0a 01 00 ÿÿð.´...

Key: {13, 1633, 0, 0}
Count: 0xffff
Length: 44 bytes
Location: byte 2980 (0xba4)
Version: 1 (new)

Key: {13, 1633, 1, 2}
Count: 0xffff
Length: 240 bytes
Location: byte 2740 (0xab4)
Version: 1 (new)

At byte 2740 (0xab4) in the block, we find the direct item for the file followed by the stat item at byte
2980 (0xba4):

00000ab0 65 6e 76 0a 65 63 68 6f 20 59 32 44 env.echo Y2D

00000ac0 45 42 55 47 20 28 29 0a 6d 65 6d 69 6e 66 6f 20 EBUG ().meminfo

00000ad0 31 20 3d 20 4d 65 6d 3a 20 31 30 33 33 34 35 36 1 = Mem: 1033456

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

19 of 21 09/17/2008 04:01 PM

00000ae0 20 38 35 39 37 36 20 39 34 37 34 38 30 20 30 20 85976 947480 0

00000af0 36 34 32 34 20 35 37 31 37 32 0a 69 53 65 72 69 6424 57172.iSeri

00000b00 65 73 3d 31 0a 68 76 63 5f 63 6f 6e 73 6f 6c 65 es=1.hvc_console

00000b10 3d 31 0a 58 31 31 69 3d 0a 4d 65 6d 54 6f 74 61 =1.X11i=.MemTota

00000b20 6c 3d 31 30 33 33 34 35 36 0a 66 62 64 65 76 5f l=1033456.fbdev_

00000b30 6f 6b 3d 31 0a 75 70 64 61 74 65 3d 0a 58 56 65 ok=1.update=.XVe

00000b40 72 73 69 6f 6e 3d 34 0a 58 53 65 72 76 65 72 3d rsion=4.XServer=

00000b50 66 62 64 65 76 0a 78 73 72 76 3d 58 46 72 65 65 fbdev.xsrv=XFree

00000b60 38 36 0a 73 63 72 65 65 6e 3d 66 62 64 65 76 0a 86.screen=fbdev.

00000b70 6d 65 6d 69 6e 66 6f 20 32 20 3d 20 4d 65 6d 3a meminfo 2 = Mem:

00000b80 20 31 30 33 33 34 35 36 20 39 32 34 30 34 20 39 1033456 92404 9

00000b90 34 31 30 35 32 20 30 20 38 32 33 32 20 36 30 35 41052 0 8232 605

00000ba0 31 36 0a 00 a4 81 05 00 01 00 00 00 ef 00 00 00 16..¤.......ï...

00000bb0 00 00 00 00 00 00 00 00 00 00 00 00 25 15 3e 3d %.>=

00000bc0 25 15 3e 3d 25 15 3e 3d 08 00 00 00 d5 02 00 00 %.>=%.>=....Õ...

Mode: S_IFREG (regular file), -rw-r--r--
Num. links: 1
Size: 239
UID: 0
GID: 0
A/M/Ctimes: 07/23/2002 21:47:01
Blocks: 8
Gen: 725

Note that the stat item contains the correct size for the file, 239 bytes. This means that byte 2979
(0xba3) of the block does not belong to the file anymore.

Example 2: f ile with indirect item

The file "/var/log/SaX.log" is 7121 bytes long. It therefor cannot fit as a direct item and needs to be split
either into two unformatted blocks or one unformatted block and a tail. In this case, the file will take up
two unformatted blocks described by one indirect item. The key for the file is {13, 1490, 0, 0} and
examining block 8482 we find out that it is contained in leaf node block number 27444.

00000040 0d 00 00 00 d2 05 00 00 Ò...

00000050 00 00 00 00 00 00 00 00 ff ff 2c 00 a4 0b 01 00 ÿÿ,.¤...

00000060 0d 00 00 00 d2 05 00 00 01 00 00 00 00 00 00 10 Ò...........

00000070 00 00 08 00 9c 0b 01 00

Key: {13, 1490, 0, 0}
Count: 0xffff
Length: 44 bytes
Location: byte 2980 (0xba4)
Version: 1 (new)

Key: {13, 1490, 1, 1}
Count: 0
Length: 8 bytes
Location: byte 2972 (0xb9c)
Version: 1 (new)

00000b90 12 52 00 00 .R..

00000ba0 13 52 00 00 a4 81 05 00 01 00 00 00 d1 1b 00 00 .R..¤.......Ñ...

00000bb0 00 00 00 00 00 00 00 00 00 00 00 00 3f aa 4a 3d ?ªJ=

00000bc0 bd aa 4a 3d bd aa 4a 3d 10 00 00 00 54 05 00 00 ½ªJ=½ªJ=....T...

Mode: S_IFREG (regular file), -rw-r--r--

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

20 of 21 09/17/2008 04:01 PM

Num. links: 1
Size: 7121
UID: 0
GID: 0
C time: Fri Aug 2 10:50:23 2002
M/Atimes: Fri Aug 2 10:52:29 2002
Blocks: 10
Gen: 1364
Block 1: 21010
Block 2: 21011

The file is thus made up of the contents of blocks 21010 and 21011. Block 21010 contains a full 4096
bytes of data, whereas block 21011 contains only 3025 bytes. For some reason, though the item header
for the indirect item (see above) doesn't contain a count of 1071 bytes as one would have expected.

Example 3: a large f ile

The file "/var/lib/rpm/fileindex.rpm" is a file of over 11 MB in size. A single indirect item can not describe
the file, as there isn't enough space in a block for such a large indirect item. The file has the key {4, 7, 0,
0}, which can be found in block 16822. This block, however, contains only the stat item for the file. The
indirect items for the file span over three more blocks: Key {4, 7, 1, 1} is in block 13286, key {4, 7,
4145153, 1} in block 20171, and key {4, 7, 8290305, 1} in block 20987. Block 13286 contains one single
indirect item:

00000010 04 00 00 00 07 00 00 00

00000020 01 00 00 00 00 00 00 10 00 00 d0 0f 30 00 01 00 Ð.0...

Key: {4, 7, 1, 1}
Count: 0
Length: 4048 bytes
Location: byte 48 (0x30)
Version: 1 (new)

What follows are 1012 pointers to unformatted blocks. Block 20171 has the same structure. Block 20987
also holds just one indirect item, but uses only 3320 bytes for 830 pointers. Note how the offset for the
next key derives directly from offset of the previous key and the number of pointers in the previous
indirect item:

1 + (1012 pointers * 4096 bytes blocksize) = 4145153
4145153 + (1012 pointers * 4096 bytes blocksize) = 8290305

Back to forensics page

Last modified: Sun Aug 17 18:19:30 EST 2003

The structure of the Reiser file system file:///data/doccd/specs/filesystems/reiserfs.php.html

21 of 21 09/17/2008 04:01 PM

